Response of Arctic temperature to changes in emissions of short-lived climate forcers

Arctic Front Summer

Major south to north air transport routes into the Arctic

What are SLCFs?

Gases and particles that have an atmospheric lifetime of a few days to a decade.

BLACK CARBON

Soot produced from combution sources. Absorbs solar radiation.

CO-EMITTED POLLUTANTS

~ Sulfur dioxide, organic carbon componds. Scatter solar radiation.

OZONE

Tropospheric ozone, air pollutant, harmful. Green house gas.

METHANE

Other report ©

Global trends in SLCFs emissions

Gridded emissions 1850-2000 Lamarque et al. (2010).

Short-lived Climate Forcers Affecting the Arctic

Goal: Assess the impact on Arctic climate of SLCF emissions from different regions and sectors

➤ Challenging task because of small d(climate) signal and large uncertainties, especially due to cloud

indirect effects

Problem: small perturbations, large variability

Estimating the climate response

Using regional temperature sensitivity factors: allows a rapid evaluation of regional emission reductions (Shindell and Faluvegi, 2009; Shindell 2012)

Surface temperature response altitude dependent

Increased **absorption** at **higher altitudes** in the Arctic (positive forcing) could lead to **surface cooling**.

Flanner, JGR, 2013

Surface temperature response altitude dependent

Vertical profiles of BC in the Arctic

→ originating from BC emissions occurring within different latitude bands.

Blue shading: indicates altitudes where BC is expected to cool the Arctic surface.

Red shading: altitudes where BC is expected to warm the Arctic surface.

One example: BC emissions from flaring oil/gas

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

Emission regions

Arctic surface temperature change

- Largest sources of warming:
 - E/S Asia domestic emissions (largely via extra-Arctic forcing)
 - Russia gas flaring (via Arctic forcing)
 - ROW domestic emissions (high BC/SO₂ emission ratio)
- Largest sources of cooling:
 - Energy+Industry+Waste emissions (esp. E/S Asia, low BC/SO₂ emission ratio)
- Fire emissions are near climate-neutral because of low BC/OC emission ratio

'Bang for the buck'

Mitigation potential

Mitigation potential Arctic surface temperatures

